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Abstract. We investigate the phase decoherence effects on the entanglement of a two-qubit anisotropic
Heisenberg XYZ model with a nonuniform magnetic field in the x–z-plane. As a measure of the entangle-
ment, the concurrence of the system is calculated. It is shown that when the magnetic field is along the
z-axis, the nonuniform and uniform components of the field have no influence on the entanglement for the
cases of ρ1 = |00〉 〈00| and ρ2 = |01〉 〈01|, respectively. But when the magnetic field is not along the z-axis,
both the uniform and the nonuniform components of the field will introduce the decoherence effects. It
is found that the effects of the Heisenberg chain’s anisotropy in the Z-direction on the entanglement are
dependent on the direction of the field. Moreover, the larger the initial concurrence is, the higher value
it will exhibit during the time evolution of the system for a proper set of the parameters ν, ∆, θ, γ, B
and b.

PACS. 03.67.-a Quantum information – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR
paradox, Bell’s inequalities, GHZ states, etc.) – 75.10.Jm Quantized spin models

QICS. 01.30.+r Quantum states and dynamics as a resource for information processing – 03.70.+c En-
tanglement versus correlation – 13.10.+n Effects of noise and imperfections

1 Introduction

Entanglement is one of the most novel features of quantum
mechanics and it can constitute a fundamental resource
for quantum computation and quantum information pro-
cessing [1,2]. In recent years, the entanglement in various
physical systems has been extensively explored. As a sim-
ple but realistic solid-state system, the Heisenberg model
is an ideal candidate for the generation and the manipula-
tion of entangled state. The model has been used to simu-
late quantum dots [3,4], nuclear spins [5], cavity QED [6,7]
and optical lattices [8]. By suitable coding, the Heisenberg
interaction alone can be used for quantum computation [9,
10]. Since the Heisenberg model is such a practical proto-
type, the entanglement in the one-dimensional Heisenberg
chains has been studied in many works which can be sep-
arated into at least three categories, namely, those that
study the infinite spin chains with at times particular at-
tention to quantum phase transition [11], those that study
the pairwise thermal entanglement in the n-qubit spin
chains [12] and those that study the two-qubit Heisenberg
spin chains [13,14].
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It should be noted that the real quantum systems will
be unavoidably connected with the surrounding environ-
ments, which can lead to decoherence. Decoherence is a
quantum phenomenon that the quantum coherence is au-
tomatically destroyed when a quantum system evolves if
the system has interaction with an environment. So it is
of great importance to study the effects of environmental
noise on the entanglement of the quantum system in view
of the practice. By far, the quantum decoherence effects
on the entanglement of the Heisenberg chains have been
considered by a few authors. Li and Xu [15] discussed the
Heisenberg XY chain with phase decoherence. They found
that the neighbor pairwise entanglement of the XY chain
with odd number length is more robust against phase de-
coherence than that with even number length. Li et al. [16]
also studied the magnetic impurity effects on the entan-
glement of the three-qubit Heisenberg XY chain with
intrinsic decoherence. It is shown that the neighbor pair-
wise entanglement decays faster than the next to neigh-
bor pairwise entanglement in the case without field im-
purity and that the magnetic impurity in middle qubit
can protect the neighbor pairwise entanglement from the
intrinsic decoherence. Shao et al. [17] considered the in-
fluence of intrinsic decoherence on the entanglement of a
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two-qubit quantum Heisenberg XYZ chain. Subsequently,
Wang et al. [18] investigated the entanglement evolution of
the two-qubit system via the Heisenberg XY interaction
in the presence of decoherence. They studied the deco-
herence influence on the entanglement due to population
relaxation and thermal effects and then identified the con-
tributions of global and local coherence to the steady state
entanglement.

In the solid state devices for physical implementation
of qubits [3,5,6,9,19], the interaction between the two
qubits is governed by an isotropic Heisenberg Hamilto-
nian. But the anisotropy is just an approximation in the
solid-matter system because the spin-orbit coupling al-
ways introduces the perturbations which will break the
isotropy of the system. Therefore, in the theoretical analy-
sis it is desirable to study the influence of the anisotropy in
the Heisenberg chains. Furthermore, the inhomogeneous
Zeeman coupling is always possible in any solid state con-
struction of qubits [20]. As a consequence, the nonunifor-
mity of the external magnetic field should be included in
the Hamiltonian of the spin chain model. Recently, the
influences of both the anisotropy of the Heisenberg model
and the inhomogeneity of the external magnetic field on
the thermal entanglement of the spin chains have been
studied in reference [14], where the spin systems were not
considered to be subject to decoherence effect. As far as
we know, although the authors of references [15–18] have
investigated the entanglement evolution of the Heisenberg
spin model with decoherence effect, the anisotropy of spin
chains and the general cases of magnetic fields were less
studied yet. Based on the above analysis, we think it is
worth examining the combined influences of the decoher-
ence effect, the anisotropy of the Heisenberg chains and
the general cases of magnetic fields on the entanglement
of the Heisenberg chains. So in this paper we attempt to
investigate the phase decoherence effects on the entangle-
ment of a two-qubit anisotropic Heisenberg XYZ chain
with a nonuniform magnetic field in the x–z-plane by em-
ploying the concurrence. Our results show that both the
direction of the field and the initial state of the system
play an important role during the time evolution of the
concurrence in the presence of phase decoherence.

2 Model and concurrence

The Hamiltonian of the two-qubit anisotropic Heisenberg
XYZ chain with an inhomogeneous magnetic field in the
x–z-plane can be written as

H =
1
2
[(1 + ν)Jσx

1 ⊗ σx
2 + (1 − ν)Jσy

1 ⊗ σy
2 + ∆Jσz

1 ⊗ σz
2

+(B + b) (σx
1 cos θ+σz

1 sin θ)+(B − b) (σx
2 cos θ+σz

2 sin θ)],
(1)

where σα
n (α = x, y, z; n = 1, 2) are the Pauli matrices

of the nth qubit. J is the real coupling constant for the
spin interaction. The chain is said to be antiferromagnetic
for J > 0 and ferromagnetic for J < 0. The parameter ν

measures the anisotropy (partial anisotropy) in the XY -
plane and ∆ measures the anisotropy in the Z-direction. θ
is the angle between the direction of the magnetic field and
the x-axis. The uniform magnetic field B ≥ 0 is restricted
and b denotes the degree of inhomogeneity of the field at
the two spin sites.

In the situation of a pure phase decoherence, the
master equation describing the time-dependent dynamical
evolution of the system under the Markovian approxima-
tion is given by [21]

dρ(t)
dt

= −i[H, ρ(t)] − γ

2
[H, [H, ρ(t)]], (2)

where γ is the phase decoherence rate. Note that equa-
tion (2) has the similar form to the equation which has
been used to depict the intrinsic decoherence [22]. The
formal solution of the above master equation can be ex-
pressed as [23]

ρ(t) =
∞∑

k=0

(γt)k

k!
Mkρ(0)M+k, (3)

where ρ(0) is the initial density operator of the system
and Mk is defined by

Mk = Hk exp(−iHt) exp
(
−γt

2
H2

)
. (4)

If the two-qubit anisotropic Heisenberg XYZ chain de-
scribed by equation (1) is taken into account, the time
evolution of the density operator of the system is shown as

ρ(t) =
∑

mn

exp
[
−γt

2
(Em − En)2 − i(Em − En)t

]

× 〈φm| ρ(0) |φn〉 |φm〉 〈φn| , (5)

where Em,n and |φm,n〉 are the eigenvalues and the corre-
sponding eigenvectors of Hamiltonian, respectively.

In this paper, we adopt the concurrence C as a mea-
sure of the entanglement. The concurrence related to the
density operator ρ of a pair of qubits is defined by [24]

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0}, (6)

where the quantities λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square
roots of the eigenvalues of the “spin-flipped” density ma-
trix operator


 = ρ(σy
1 ⊗ σy

2 )ρ∗(σy
1 ⊗ σy

2 ), (7)

where the asterisk indicates the complex conjugation. The
concurrence C = 0 corresponds to a separable state and
C = 1 to a maximally entangled state. Nonzero concur-
rence means that the two qubits are entangled.

3 Decoherence effects on the entanglement
of the XYZ model with the magnetic field
along the z-axis

In this section, we will consider the phase decoherence
effects on the entanglement of the two-qubit anisotropic
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Fig. 1. (Color online) Concurrence of the two-qubit Heisenberg
XYZ model without a magnetic field is plotted as a function
of time t for different anisotropic parameters ν and different
phase decoherence rates γ, where (a) γ = 0.1, (b) γ = 0.7.
Here the solid line corresponds to ν = 0, the dashed line to
ν = 0.05, the dotted line to ν = 0.2, the dash-dotted line to
ν = 0.6. Here and after, the coupling constant J is set to one.

Heisenberg XYZ chain with a nonuniform magnetic field
along the z-axis. When the field is along the z-axis, the
Hamiltonian of the two-qubit Heisenberg XYZ chain is
given by equation (1) with θ = π/2. In the standard basis
{|11〉, |10〉, |01〉, |00〉}, the eigenvectors of the Hamiltonian
can be derived as

|Ψz
1 〉 =

1√
1 + ξ2/J2

(ξ|10〉/J + |01〉),

|Ψz
2 〉 =

1√
1 + ζ2/J2

(ζ|10〉/J + |01〉),

|Ψz
3 〉 =

1√
1 + µ2/(νJ)2

(µ|11〉/νJ + |00〉),

|Ψz
4 〉 =

1√
1 + κ2/(νJ)2

(κ|11〉/νJ + |00〉), (8)

with the corresponding eigenvalues:

Ez
1 = −∆J

2
− δ, Ez

2 = −∆J

2
+ δ,

Ez
3 =

∆J

2
− σ, Ez

4 =
∆J

2
+ σ, (9)

where δ =
√

J2 + b2, σ =
√

(νJ)2 + B2, ξ = b − δ, ζ =
b + δ, µ = B − σ and κ = B + σ.

First, we consider the case that the qubits 1 and 2
are both initially in the spin-down states, i.e., they are
initially in the unentangled state ρ1(0) = |00〉 〈00|. Based
on equations (5, 8, 9), the time evolution of the density
operator of the system can be obtained as

ρ1(t) = ω1 |11〉 〈11|+ε1 |11〉 〈00|+ε∗1 |00〉 〈11|+�1 |00〉 〈00| ,
(10)

where

ω1 =
[

µ/νJ

1 + µ2/(νJ)2

]2

+ exp(−2γσ2t + 2iσt)
µ/νJ

1 + µ2/(νJ)2
κ/νJ

1 + κ2/(νJ)2

+
[

κ/νJ

1 + κ2/(νJ)2

]2

+ exp(−2γσ2t − 2iσt)
µ/νJ

1 + µ2/(νJ)2
κ/νJ

1 + κ2/(νJ)2
,

ε1 =
µ/νJ

[1 + µ2/(νJ)2]2

+ exp(−2γσ2t − 2iσt)
1

1 + µ2/(νJ)2
κ/νJ

1 + κ2/(νJ)2

+
κ/νJ

[1 + κ2/(νJ)2]2

+ exp(−2γσ2t + 2iσt)
µ/νJ

1 + µ2/(νJ)2
1

1 + κ2/(νJ)2
,

�1 =
[

1
1 + µ2/(νJ)2

]2

+ exp(−2γσ2t + 2iσt)
1

1 + µ2/(νJ)2
1

1 + κ2/(νJ)2

+
[

1
1 + κ2/(νJ)2

]2

+ exp(−2γσ2t − 2iσt)
1

1 + µ2/(νJ)2
1

1 + κ2/(νJ)2
.

(11)

In this case, according to equations (6, 7, 10), the concur-
rence of the system can be given by

C(ρ1) =

√
m1 + q1 +

√
(m1 − q1)2 + 4n1p1

2

−
√

m1 + q1 −
√

(m1 − q1)2 + 4n1p1

2
, (12)

where m1 = ε1ε
∗
1 + ω1�

∗
1 , n1 = ε1ω

∗
1 + ω1ε1, p1 = �1ε

∗
1 +

ε∗1�
∗
1 , q1 = �1ω

∗
1 + ε1ε

∗
1. Note that the coefficients ω1, ε1

and �1 do not contain the parameters b and ∆, that is
to say, both the nonuniformity of the magnetic field and
the anisotropy in the Z-direction of the Heisenberg chain
have no influence on the entanglement even if γ �= 0.

In the following we will give the numerical results of
the concurrence. In Figure 1 we plot the concurrence C(ρ1)
as a function of time t for different ν with different phase
decoherence rate γ. By comparing Figure 1a with 1b, it
is easy to observe that the destructive effect of the deco-
herence becomes more visible after the decoherence rate γ
is raised. Because b and ∆ have no decoherence effect on
the entanglement of the system and we set B = 0, so the
decoherence effect is due to the Heisenberg chain’s partial
anisotropy which is measured by the parameter ν. From
Figure 1, one can find that there is no decoherence effect
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Fig. 2. (Color online) Concurrence of the two-qubit Heisenberg
XYZ model with a uniform magnetic field is plotted as a func-
tion of time t for different phase decoherence rates γ, where (a)
B = 0, (b) B = 0.1. Here the solid line corresponds to γ = 0.1,
the dashed line to γ = 0.5, the dotted line to γ = 0.8. The
anisotropic parameter ν = 0.1.

if ν = 0 (the x–y-plane is isotropic), but the decoherence
effects will exist for the ν �= 0 case and the extreme value
of the concurrence decays faster during the time evolution
of the system if the partial parameter ν is raised. The
decoherence case that the x–y-plane is isotropic can be
understood as follows: when ν = 0, the eigenvectors |Ψz

3 〉
and |Ψz

4 〉 respectively go to

|Ψ ′z
3 〉 = |00〉, |Ψ ′z

4 〉 = |11〉, (13)

with the corresponding eigenvalues:

E′z
3 =

∆J

2
− B, E′z

4 =
∆J

2
+ B. (14)

In this situation, if the system is initially in the state
ρ′1(0) = |a0|2 |11〉 〈11| + |b0|2 |00〉 〈00| (|a0|2 + |b0|2 = 1),
the time evolution of the density operator of the system
will remain as the initial state, i.e., ρ′1(t) = ρ′1(0). Obvi-
ously, the state ρ1(0) = |00〉 〈00| is a special case of ρ′1(0)
with |a0|2 = 0 and |b0|2 = 1, that is the reason why the
solid line in Figure 1 keep to zero with the evolution of
time t.

In Figure 2 we depict the concurrence C(ρ1) changing
with time t for different γ without the magnetic field B
(for Fig. 2a) or with the magnetic field B (for Fig. 2b).
One can see that the depletable effect of the phase deco-
herence on the concurrence increases with the increasing
γ, which is consistent with the result of Figure 1. If there
is no magnetic field, the concurrence is at last destroyed
completely due to the decoherence effect, which can be
seen from Figure 2a. In contrast to Figure 2a, after the
magnetic field is given in Figure 2b, the concurrence for
different γ will arrive at a steady-going nonzero value for

the long-time case, which means that the uniform mag-
netic field B is a positive component to the entanglement
when the partial anisotropic parameter of the system is at
a fixed nonzero value. In references [16,17] they obtained
the similar result that a proper external magnetic field
can protect the entanglement from the destructive effect
of the intrinsic decoherence.

Now we consider the situation that the qubits 1 and 2
are initially in another unentangled state ρ2(0) = |01〉 〈01|.
In this case, the time evolution of the density operator of
the system can be derived as

ρ2(t) = ω2 |10〉 〈10|+ε2 |10〉 〈01|+ε∗2 |01〉 〈10|+�2 |01〉 〈01| ,
(15)

where

ω2 =
[

ξ/J

1 + ξ2/J2

]2

+ exp(−2γδ2t + 2iδt)
ξ/J

1 + ξ2/J2

ζ/J

1 + ζ2/J2

+
[

ζ/J

1 + ζ2/J2

]2

+ exp(−2γδ2t − 2iδt)
ξ/J

1 + ξ2/J2

ζ/J

1 + ζ2/J2
,

ε2 =
ξ/J

(1 + ξ2/J2)2

+ exp(−2γδ2t − 2iδt)
1

1 + ξ2/J2

ζ/J

1 + ζ2/J2

+
ζ/J

(1 + ζ2/J2)2

+ exp(−2γδ2t + 2iδt)
ξ/J

1 + ξ2/J2

1
1 + ζ2/J2

,

�2 =
[

1
1 + ξ2/J2

]2

+ exp(−2γδ2t + 2iδt)
1

1 + ξ2/J2

1
1 + ζ2/J2

+
[

1
1 + ζ2/J2

]2

+ exp(−2γδ2t − 2iδt)
1

1 + ξ2/J2

1
1 + ζ2/J2

. (16)

Then from equations (6, 7, 15), we can obtain the concur-
rence

C(ρ2) =

√
m2 + q2 +

√
(m2 − q2)2 + 4n2p2

2

−
√

m2 + q2 −
√

(m2 − q2)2 + 4n2p2

2
, (17)

where m2 = ε2ε
∗
2 + ω2�

∗
2 , n2 = ε2ω

∗
2 + ω2ε2, p2 =

�2ε
∗
2 + ε∗2�∗

2 , q2 = �2ω
∗
2 + ε2ε

∗
2. What should be men-

tioned here is that, the coefficients ω2, ε2 and �2 are in-
dependent of the parameters B and ∆, which indicates
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Fig. 3. (Color online) Concurrence of the two-qubit Heisenberg
XYZ model with a nonuniform magnetic field is plotted as
a function of time t for different phase decoherence rates γ,
where (a) b = 0, (b) b = 0.9. Here the solid line corresponds to
γ = 0.1, the dashed line to γ = 0.5, the dotted line to γ = 0.8.
The anisotropic parameter ν = 0.1.

that both the uniform component of the magnetic field
and the anisotropy in the Z-direction of the Heisenberg
chain have no effect on the entanglement.

In Figure 3 we display the concurrence C(ρ2) as a func-
tion of time t without (for Fig. 3a) or with (for Fig. 3b)
the nonuniform magnetic field b. By comparing Figure 3
with Figure 2, we find that whether the magnetic field
is given or not, the concurrence’s oscillating time of the
ρ2(0) = |01〉 〈01| case is much shorter than that of the
ρ1(0) = |00〉 〈00| case. This indicates that the initial state
of the system plays an important role in the time evolution
of the entanglement of the system with phase decoherence.
Besides, By comparing Figure 3b with Figure 2b, one can
see that the effect of the nonuniform field b on the con-
currence in the ρ2(0) case is similar to that of the uniform
field B in the ρ1(0) case, i.e., the nonuniform field b can
also weaken the destructive effect of the phase decoherence
on the entanglement to some extent for the long-time case.

Since the magnetic field can protect the entanglement
from being destroyed by the decoherence effect and gener-
ate a stationary entangled state of the two qubits for the
long-time case, next we will focus on investigating how the
field affect the concurrence C(ρ1) and C(ρ2) in the case of
the long-time limit. As the time t approaches to infinite,
the coefficients ω1, ε1 and �1 will respectively turn into

see equations (18) below.

According to equations (12) and (18), if the parameter ν is
at its fixed value, the concurrence C(ρ1) is only influenced
by the strength of the uniform magnetic field B (J = 1).
Similarly, in the case that the time t approximates infinite,
the coefficients ω2, ε2 and �2 will respectively turn into

see equations (19) below.

From equations (17) and (19), it is easily to see that the
concurrence C(ρ2) is only affected by the strength of the
nonuniform magnetic field b (J = 1) for the long-time
case. In Figure 4 we plot the influences of both the uni-
form (Fig. 4a) and the nonuniform (Fig. 4b) magnetic field
on the entanglement of the system in the presence of the
phase decoherence for the long-time case. It is shown that
with the increases of the strength of the magnetic field, the
concurrence first increases from zero to a maximal value,
then it begins to decay monotonously. From the figure,
one can see that the maximal value of the concurrence
Cmax(ρ1) � 0.5 appears at B � 0.1, while Cmax(ρ2) � 0.5
appears at b � 1, which means that the concurrence of the
ρ1(0) = |00〉 〈00| case is sensitive to the uniform magnetic
field, but the concurrence of the ρ2(0) = |01〉 〈01| case is
not so sensible to the nonuniform magnetic field.

4 Decoherence effects on the entanglement
of the XYZ model with the magnetic field
along an arbitrary direction in the x–z-plane

After examining the phase decoherence effects on the en-
tanglement of the two-qubit Heisenberg XYZ model with
the magnetic field along the z-axis in the above section,
now in this section, we will study the influence of the
decoherence on the entanglement of the XYZ model with
the field along an arbitrary direction in the x–z-plane.

ω′
1=

ν2J2

2(B2 + ν2J2)
, ε′1=

−2B

νJ [1 + (2B2 + ν2J2 + 2B
√

B2 + ν2J2)/ν2J2][1 + (2B2 + ν2J2 − 2B
√

B2 + ν2J2)/ν2J2]

�′
1=

1
[1 + (2B2 + ν2J2 + 2B

√
B2 + ν2J2)/ν2J2]2

+
1

[1 + (2B2 + ν2J2 − 2B
√

B2 + ν2J2)/ν2J2]2
(18)

ω′
2=

J2

2(b2 + J2)
, ε′2=

−2b

J [1 + (2b2 + J2 + 2b
√

b2 + J2)/J2][1 + (2b2 + J2 − 2b
√

b2 + J2)/J2]

�′
2=

1
[1 + (2b2 + J2 + 2b

√
b2 + J2)/J2]2

+
1

[1 + (2b2 + J2 − 2b
√

b2 + J2)/J2]2
(19)
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Fig. 4. Concurrence of the two-qubit Heisenberg XYZ model
versus B and b for different initial states at the infinite time
limit, where (a) ρ1(0) = |00〉 〈00|, (b) ρ2(0) = |01〉 〈01|. The
anisotropic parameter ν = 0.1.
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Fig. 5. (Color online) Concurrence of the two-qubit Heisenberg
XYZ model with different magnetic fields is plotted as a func-
tion of time t, where (a) θ = 0, the solid line corresponds to
B = 0 and b = 0, the dashed line to B = 0.5 and b = 0, the
dotted line to B = 0 and b = 0.5, (b) θ = π/3, the solid line
corresponds to B = 0 and b = 0, the dashed line to B = 0.1
and b = 0, the dotted line to B = 0 and b = 1. The other
parameters are ν = 0.1, ∆ = 0, γ = 0.3.

The Hamiltonian of the two-qubit anisotropic Heisenberg
XYZ chain with an inhomogeneous magnetic field in the
x–z-plane is given by equation (1). We do not list the ana-
lytical expressions of the eigenvectors and the eigenvalues
of the Hamiltonian here because they are rather compli-
cated.

In Figure 5 we plot the concurrence evolving with time
t for different magnitudes and different directions of the

Fig. 6. (Color online) Concurrence of the two-qubit Heisenberg
XYZ model with a nonuniform magnetic field is plotted versus
t and ∆ for different θ, where (a) θ = 0, (b) θ = π/4. The other
parameters are ν = 0.2, γ = 0.6, B = 0, b = 1.

magnetic field (the initial state of the system is supposed
to be ρ1(0) = |00〉 〈00|). It can be seen that in the θ �= π/2
case, both the uniform component and the nonuniform
component of the magnetic field will have effects on the en-
tanglement during the decoherence process. In Figure 5a,
the dashed line (B = 0.5, b = 0) and the dotted line
(B = 0, b = 0.5) lap over with each other, which im-
plies that for the case that the magnetic field is along the
x-axis and ∆ = 0, whether the fields on the two qubits
are in the same direction or in the opposite directions,
the concurrence are in good agreement with each other
if the strength of the fields on the two qubits are same.
Moreover, by comparing the dotted line with the solid
line in each graph of Figure 5, we find that a proper set
of the magnitude and the direction of the magnetic field
can greatly prolong the fluctuant time of the concurrence
before the system reaches a steady state.

In Figure 6 we consider the influence of the anisotropic
parameter ∆ on the entanglement in the presence of
decoherence (the system is also assumed to be initially
in ρ1(0) = |00〉 〈00|). From Figure 6a one can observe that
the maximum concurrence the system can arrive at be-
comes larger after ∆ is raised and that the concurrence
at smaller ∆ decays much rapidly than that at larger ∆.
This means that the destructive effect of the phase deco-
herence on the entanglement is reduced by the introduc-
tion of the anisotropy in the Z-direction. But we notice
that after the magnetic field is changed into another direc-
tion, the effect of parameter ∆ on the entanglement with
decoherence in Figure 6b is completely opposite to that in
Figure 6a, which indicates that the influence of ∆ on the
decoherence process is dependent on the direction of the
magnetic field.

In our previous discussions, we only considered that
the two qubits 1 and 2 are supposed to be initially in the
unentangled states ρ1(0) = |00〉 〈00| and ρ2(0) = |01〉 〈01|.
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(d) Fig. 7. (Color online) Concurrence of the
two-qubit Heisenberg XYZ model with a
nonuniform magnetic field is plotted ver-
sus t for different initial states, where (a)
a1 = 1/3, b1 = 2

√
2/3, (b) a1 =

√
2/2,

b1 =
√

2/2, (c) a2 = 1/3, b2 = 2
√

2/3, (d)
a2 =

√
2/2, b2 =

√
2/2. Here the solid line

corresponds to θ = 0, the dashed line to
θ = π/6, the dotted line to θ = π/3, the
dash-dotted line to θ = π/2. The other pa-
rameters are ν = 0.1, ∆ = 0.3, γ = 0.5,
B = 0.1, b = 0.1.

In what followed, the situation that the initial state of the
system is an entangled state will be taken into account
and we will concentrate on studying the influence of the
initial concurrence of the two qubits on the time evolution
of the entanglement of the system in the presence of the
phase decoherence. In Figure 7 we plot the evolution of
the concurrence whose initial state is an entangled state.
Figures 7a and 7b depict the case that the qubits 1 and 2
are initially in the entangled state |Φ(0)〉 〈Φ(0)| (|Φ(0)〉 =
a1 |00〉+b1 |11〉, |a1|2 + |b1|2 = 1), while Figures 7c and 7d
represent the case that qubits 1 and 2 are entangled in
the state |Ψ(0)〉 〈Ψ(0)| (|Ψ(0)〉 = a2 |01〉 + b2 |01〉, |a2|2 +
|b2|2 = 1) at the beginning. Obviously, the concurrence
of the system which is initially in the state |Ψ(0)〉 〈Ψ(0)|
decays more rapidly than that of which is initially in the
state |Φ(0)〉 〈Φ(0)| before they reach their steady values.
By comparing Figure 7a with Figure 7b and comparing
Figure 7c with Figure 7d, we find that under the condition
of a fixed set of the parameters ν, ∆, θ, γ, B and b, the
larger the initial concurrence of the two qubits, the higher
value the concurrence will display in the time evolution of
the system with phase decoherence. This denotes that the
initial concurrence of the two qubits is of great significance
on the entanglement during the whole evolution process
of the system.

5 Conclusions

In summary, by calculating the concurrence, we have pro-
vided a detailed analytical and numerical analysis of phase
decoherence for a two-qubit anisotropic Heisenberg XYZ
model system with a nonuniform magnetic field in the
x–z-plane. In the special situation of θ = π/2, we have

found that the initial state of the system plays an im-
portant role in the time evolution of the entanglement.
The nonuniformity of the magnetic field has no effect on
the entanglement for the ρ1(0) = |00〉 〈00| case, while the
uniform component of the field has no effect on the en-
tanglement if ρ2(0) = |01〉 〈01|. Moreover, it is shown that
the larger the anisotropic parameter ν is, the faster the
concurrence will decay if γ �= 0. On the other hand, when
the magnetic field is along an arbitrary direction (except
for θ = π/2) in the x–z-plane, we have found that both
the uniform component and the nonuniform component
of the field have phase decoherence effects on the entan-
glement of the system. It is demonstrated that the intro-
duction of anisotropy in the Z-direction will have effects
on the entanglement if θ �= π/2 and the effects depend
on the specific direction of the field. Besides, it should be
pointed out that after a fixed set of the parameters ν, ∆,
θ, γ, B and b is chosen, the initial larger concurrence of
the two qubits will lead to higher concurrence throughout
the whole evolution of the entanglement in the presence
of phase decoherence.
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